Topic 2-
First order ODE Theory

Let us discuss first order ODEs
problems of the form

$$
\frac{dy}{dx} = f(x,y)
$$

$$
y(x_0) = y_0
$$

Let us discuss first order ODEs
\nproblems of the form
\n
$$
\frac{dy}{dx} = f(x,y)
$$
\n
$$
y(x_0) = y_0
$$
\n
$$
y(x_0) = y_0
$$
\n
$$
y'(x_0) = y_0
$$
\n
$$
y' = 2xy
$$
\n
$$
y'(0) = 1
$$
\nLet $\varphi(x) = e^{x}$
\nThen, $\varphi(x) = 2 \times e^{x}$
\nSo, $\varphi'(x) = 2 \times \varphi(x)$
\nThus, $\varphi(s) = e^{e^{x} \cdot e^{x}}$
\nThus, $\varphi(s) = e^{x} \cdot e^{x}$
\nThus, $\varphi(s) = \frac{e^{x} \cdot e^{x}}{e^{x} \cdot e^{x}}$
\nThus, $\varphi(s) = \frac{e^{x} \cdot e^{x}}{e^{x} \cdot e^{x}}$
\nThus, $\varphi(s) = \frac{e^{x} \cdot e^{x}}{e^{x} \cdot e^{x}}$
\nThus, $\varphi(s) = \frac{e^{x$

$$
Ex: Consider the initial-value problem\n
$$
\frac{dy}{dx} = xy^{\frac{1}{2}}
$$
\n
$$
y(0) = 0
$$
\n
$$
y(0) = 0
$$
\n
$$
Let y_{1}(x) = 0 for all x.\n
$$
y_{2}
$$
\n
$$
y_{1} = 0.
$$
\n
$$
y_{2}
$$
$$
$$

Solution I:
\nLet
$$
y_1(x) = 0
$$
 for all x.
\nThen, $y_1' = 0$.
\nSo, $y_1' = 0 = x \cdot 0 = xy^{1/2}$
\n $1 \cdot 1 \cdot 1 = 0$
\nThus, $y_1 = 0 = x \cdot 0 = xy^{1/2}$
\nThus, $y_1 = 0$
\n $y_0 = 0$

$$
\frac{\int_{0}^{1} (1)^{2} \cdot 3^{2}}{\int_{0}^{1} (1)^{2} \cdot 3^{2}} = \frac{x^{4}}{16}
$$
\nThen, $y_{2}^{1} = \frac{1}{4}x^{3}$
\nSo, $y_{2}^{1} = \frac{1}{4}x^{3}$
\n $x y_{2}^{1/2} = x \sqrt{\frac{x^{4}}{16}} = x \cdot \frac{x^{2}}{4} = \frac{1}{4}x^{3}$
\nThus, $y_{2}^{1} = x y_{2}^{1/2}$.

And
$$
y_2(\circ) = \frac{0}{16} = 0
$$
.
Thus, y_2 solves $(**)$ also.

Are there criteria that give a unique tre there criterial following initial-value problem?

$$
\frac{dy}{dx} = f(x,y)
$$

 $Area of the region to
\n30 units of 25
\n
$$
60 \text{ bits of 25}
$$
\n
$$
40 \text{ k/s} = 6
$$$ There is there
a lution to the fit
 $\frac{dy}{dx} = f(x,y)$
 $\frac{dy}{dx} = f(x,y)$
 $\frac{dy}{dx} = \frac{f(x,y)}{g(x)}$
 $\frac{dy}{dx} = \frac{f(x,y)}{g(x)}$ $\frac{dy}{dx} = f(x,y)$
 $y(x_0) = y_0$

Answer: Yes.

Theorem (due to Picard [1856-1941])

Theorem (due to Picard [1856-1941])
 $\frac{1}{1-t}R$ be the rectangular region Theorem R be the rectangular reg
R be the rectangular reg Wer: Yes.

Herem (due to Picard [185]

Let R be the rectangula

Let R be the rectangula in the xy-plane defined by $a \le x \le b$
and $c \le y \le d$ that $d \left(\frac{y}{(x_0, y_0)}\right)^{n}$ The criteria that give a voigue

dy (bition to the following initial value problem)

dy (x0)=90

Answer: Yes.

Theorem (due to Picard [1856-1941])

Theorem (due to Picard [1856-1941])

Theorem (due to Picard [1856-1941])
 $(X0, Y0)$ in iii, $\frac{\partial f}{\partial x}$

If $f(x,y)$ and $\frac{\partial f}{\partial y}$ are
Then
Cen! ion are continuous and $\frac{\partial f}{\partial y}$
s un R, $\frac{\partial f}{\partial x}$
exists an interval I there and a vaigue function centered at Xo centered at x_0 and x_1 that satisfies
y(x) defined on T that satisfies
 $\frac{dy}{dx} = f(x,y)$, y(xo)=yo $y = f(x,y)$, $y(x_0) = y_0$

Ex : Consider 2 X We must find a Here $f(x,y)=2xy$. rectangular $x: Consid
y'=2xy
y(o)=1$ = 1 region R $\frac{1}{\sqrt{\frac{1}{1-\frac{$ ne most litter
rectuagular region
that contains (0, that contains (0,1) rectuagular region K
that contains (0,1)
where f and of are continuous . -Y $f(x,y) = 2xy$ is continuous everywhere . R $\frac{\partial f}{\partial y} = 2x$ is Continuous everywhere. Thus, R would $\overline{\delta}$ y be the entire xy -plane xy there And Ficard's thereom says there w ith y(o)=1. solution $\frac{15}{15}$ a unique $\frac{50}{10}$
 $\frac{2}{3}$ 11 I We saw x^2 that we before It is $y(x) = e$